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Central Question 

• Given any statement about mathematics, is it 
true or is it false? 
 

• Example:  
– Goldbach Conjecture: Every even number greater 

than 2 is the sum of two prime numbers. 
– True or false? 



Decision Problem 

• The decision problem for mathematics is to 
find a way to decide whether some statement 
about mathematics is true or false. 
 

• Each domain has their own decision 
problem(s). 
 



Decision Procedures 

Mathematical  
Statement  

“True” 

“False” 

?? 

P 

P being a ‘procedure’ can be understood as P being some  
kind of systematic method, or algorithm 



Soundness and Completeness 

• A decision procedure P is sound with regard to 
some domain D iff: 
– For any statement S about domain D: 

• If P returns “True”, then S is true 
• If P returns “False”, then S is false 

• A decision procedure P is complete with 
regard to some domain D iff: 
– For any statement S about domain D: 

• If S is true, then P returns “True” 
• If S is false, then P returns “False” 



The Axiomatic Method 

• Define a set of axioms AD that capture basic 
truths about some domain D, and see 
whether some statement S about domain D 
follows from AD 



The Hope 

1. There exists a set of axioms A such that all, 
and only, mathematical truths are logical 
consequences of A 

2. There exists a decision procedure P for 
deciding whether or not some mathematical 
statement S is a logical consequence of A 

 



The Really Exciting Prospect 

• If 1 and 2 are true, and assuming we can 
implement P on a computer (which, assuming 
such a P exists, is quite likely, since it’s all 
formal logic!): 
 

• Proving or disproving mathematical claims can 
be completely automated! 
 



Decision Procedure for  
Logical Consequence 

A, S 

“True” (S follows  
from A) 

“False” (S does  
not follow from A) 

?? 

P 

“Entscheidungsproblem” 
(German for Decision Problem) 



Alan Turing, 1936 
• Published “On Computable Numbers, with an 

application to the Entscheidungsproblem” 
– … his ‘Turing-machines’ paper! 

• Argued that the Entscheidungsproblem is unsolvable 
– There is no sound and complete systematic method for 

deciding whether some (first-order logic) argument is valid 
or not 

– (combined with Godel’s work on the arithmetization of 
logic, this implies that there is also no decision procedure 
for arithmetic, let alone all of mathematics) 

• Required Turing to consider all possible ‘systematic 
methods’, i.e. ‘computations’ or ‘symbol-manipulating 
algorithms’ … but how? 



Computations 

• A computation is a symbol-manipulation 
algorithm. 
– Example: long division. 

• Not every algorithm is a computation 
– Example: furniture assembly instructions 





Computers 

• A ‘computer’ is something that computes, i.e. 
something that performs a computation, i.e. 
something that follows a systematic procedure to 
transform input strings into output strings. 

• Humans can take the role of a computer. 
– Of course, this does require that the human is able to 

understand and perform the operations, i.e. that the 
human can indeed execute the algorithm. 

– If this is so, we call the computation ‘effective’. 
• Modern computers have mechanized the process of 

computation 
– Are there mechanical computations that no longer can be 

performed by humans, i.e. that are no longer effective? 



The Scope and Limits of  
Effective Computation 

• In his 1936 paper, Turing tried to figure out what the 
basic elements are of any effective computation … or 
at least to what elements any kind of computation 
can always be reduced to. 



States and Symbols 

• Take the example of multiplication: we make marks 
on any place on the paper, depending on what other 
marks there already are, and on what ‘stage’ in the 
algorithm we are (we can be in the process of 
multiplying two digits, adding a bunch of digits, 
carrying over). 

• So, when going through an algorithm we go through 
a series of stages or states that indicate what we 
should do next (we should multiply two digits, we 
should write a digit, we should carry over a digit, we 
should add digits, etc).  



A Finite Number of Abstract States 

• The stages we are in vary between the different 
algorithms we use to solve different problems.  

• However, no matter how we characterize these 
states, what they ultimately come down to is that 
they indicate what symbols to write based on what 
symbols there are. 

• Hence, all we should be able to do is to be able to 
discriminate between different states 
– what we call them is completely irrelevant! 

• Moreover, although an algorithm can have any 
number of stages defined, since we want an answer 
after a finite number of steps, there can only be a 
finite number of such states. 



A Finite Set of Abstract Symbols 

• Next, Turing pointed out that the symbols are 
abstract as well: whether we use ‘1’ to represent the 
number 1, or ‘☺’ to do so, doesn’t matter. 

• All that matters is that different symbols can be used 
to represent different things. 
– What actual symbols we use is irrelevant! 

• Also, while we can use any number of symbols, any 
finite computation will only deal with a finite number 
of symbols. So, all we need is a finite set of symbols. 



A String of Symbols 

• While we can write symbols at different places (e.g. 
in multiplication we use a 2-dimensional grid), 
symbols have a discrete location on the paper. These 
discrete locations can be numbered. 

• Or, put another way: we should be able to do 
whatever we did before by writing the symbols in 
one big long (actually, of arbitrarily long size) string 
of symbols. 
 



Reading, Writing, and Moving between 
Symbols 

• During the computation, we write down symbols on 
the basis of the presence of other symbols. So, we 
need to be able to read and write symbols, but we 
also need to get to the right location to read and 
write those symbols.  

• With one big long symbol string, however, we can get 
to any desired location simply by moving left or right 
along this symbol string, one symbol at a time. 



The Scope and Limits of  
Effective Computation VI 

• Turing thus obtained the following basic components 
of effective computation: 
– A finite set of states 
– A finite set of symbols 
– One big symbol string that can be added to on either end 
– An ability to move along this symbol string (to go left or 

right) 
– An ability to read a symbol 
– An ability to write a symbol 

• This is … a Turing–machine! 



Church-Turing Thesis 
• The Church-Turing Thesis is that anything that we can figure 

out using any kind of systematic method can be figured out 
using a Turing-machine. 

• In short: anything that is effectively computable is Turing-
computable 

• Note: we can’t mathematically prove this Thesis, since we 
can’t mathematically prove whether the mathematical 
definition of Turing-computability captures the conceptual 
notion of computability … but we can provide (and have!) 
lots of evidence in its favor: so far, we have not a single 
example of a systematic method that we can follow that 
figures things out that Turing-machines cannot! 



Turing Machines Demo 



‘Computing Things’ Using a  
Turing-Machine 

• Remember that we want computations to ‘figure 
something out’, i.e. we want to ‘compute something’. E.g: 
– Compute the answer to some question 
– Compute the solution to a problem 

• The things we want to compute can often (always) be 
stated as functions (e.g. question → answer. Or: problem → 
solution) 

• So: we have a machine that transforms input symbol strings 
into output symbol strings, and we want to use that to 
compute a function from some domain to some other 
domain. 
– But that means that to compute a function, we need to 

interpret what the machine is doing. See next slide! 



Computing Functions 
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Machine doing its thing 

Figuring Stuff Out 
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Syntactic 
Computation 

Semantic 
Computation 



Machines as Functions 

• We can, and it is in fact useful to, treat any 
Turing-machine M as a function … 

• But it would be a function that maps input 
configurations to output configurations.  

• In other words, M : TC → TC 
 



Representations and Configurations 

• OK, so to use a Turing-machine to compute a function, we 
need to specify how we are going to represent the input to 
the function on the input tape … but we also need to 
specify where the read/write head is! 
– Indeed, one could regard the position of the read/write head as 

part of the representation, in that the same tape could 
represent different things, depending on the position of the 
head on that tape … though this is highly ‘irregular’ 

• Let’s call the contents of the tape, together with the 
position of the read/write head, the (tape) configuration of 
the Turing-machine. 
– Let TC be the set of all possible tape configurations  
– Oh, and let TM be the class of all Turing Machines 



Representing Natural Numbers 
• From now on, we are going to focus on functions from 

(any number of) natural numbers to natural numbers. 
E.g 
– Addition 
– Multiplication 
– Successor 

• OK, so we need some representation of numbers! 
– Decimal?  
– Binary? 
– Unary? 
– … all are ok …  but some are more ‘computation-friendly’ 

than others! 
 
 

 



‘Standard’ Representation 1 

• One ‘standard’ way to encode numbers using a Turing-
machine is to use unary representation: 
– To represent the number n, we use a block of n consecutive 1’s 
– If we have multiple numbers, we separate them by 0’s (or blanks) 
– Also, for the input and output, standard practice is to require that the 

read/write head is on the left-most 1 of the left-most block of 1’s 

• So: let us define [n1,n2, …, nm] as the configuration of having a 
block of n1 consecutive 1’s on the tape, followed by a 0, 
followed by a block of n2 consecutive 1’s, followed by a 0, …, 
followed by a block of nm consecutive 1’s, on an otherwise 
blank (=0) tape, and with the read-write head on the left-most 
1 of the left-most block of 1’s 
 



Computing the Successor Function 
• As an example, let us use a Turing-machine to compute 

the successor function, i.e. s(n) = n+1, using the just 
defined convention. 

• That is, we want a Turing-machine that for any n, 
transforms input configuration [n] into output 
configuration [n+1] 

• OK, this will do (0 is start state, 2 is halting state): 
– <0,1,L,1> (in state 0, if you see a 1, move left and go to 

state 1) 
– <1,0,1,2> (in state 1, if you see a 0, write a 1, and move to 

state 2) 
• Let us call this machine Ms 



More Formally 
• Notice that machine Ms does something with *any* input configuration, whether it is of the 

form [n] or not. But, relevant to what we want to show, we have that in particular:  
 

𝑀𝑠 𝑛 = 𝑛 + 1  
 

• Let us define encoding c: N → TC: 
 

𝑐(𝑛)  =  [𝑛] 
 

• Finally, let us define decoding c: TC → N: 
 

   𝑑 𝑇 = � 𝑛 𝑖𝑖 𝑇 = [𝑛]
𝑢𝑛𝑑𝑢𝑖𝑖𝑛𝑢𝑑 𝑜𝑜𝑜𝑢𝑜𝑜𝑖𝑜𝑢   

 

• It is now easy to see that for any n  N:  
 

𝑑(𝑀(𝑐(𝑛)))  =  𝑛 + 1 

 

• This is why we can say that machine Ms computes function s 



Using M to ‘compute’ f 

• OK, so it seems that in general, we have the 
following definition: 

• Machine M computes function f : X → Y iff: 
– There exists an encoding c and decoding d such 

that for all x ∈ X and y ∈ Y:  
• if f(x) = y, then d(M(c(x))) = y 



Whoops!! 

• With this definition, *every* function whose 
domain is enumerable is computable …. by 
the null machine! (i.e. the machine that does 
nothing, i.e. for which M(i) = i) 

• Proof: For c, pick any injective function. Now 
define d as: d(o) = f(c-1(o))! 
– (alternative proof: pick c in such a way that it 

already encodes the answer as part of its 
encoding of the question … this is called 
‘Bramming’) 



‘Reasonable’ Representations 

• ‘Brammings’ are not ‘reasonable’ 
representations! 

• We want ‘reasonable’ representations. 
• But how to define this? 



Transformable Encodings 

• “The encoding can be done in may reasonable 
ways. It does not matter which one we pick, 
because a Turing machine can always translate 
one such encoding into another” (Sipser) 

• But how do we know this is true?  Maybe there is 
some ‘reasonable’ encoding that is not 
transformable into other ‘reasonable’ encodings. 

• And if we define a ‘reasonable‘ encoding as one 
that is transformable into (…what?! How to avoid 
a circular definition here?!) … then that puts the 
cart before the horse! 
 



‘Effective’ Encodings 

• Probably the best thing we can do is to say 
that encodings should be ‘effective’ , i.e. that 
humans should be able to perform the 
encoding. 



Church-Turing Thesis, Revisited 

• We can now a bit more careful about the 
Church-Turing Thesis: 
– Anything that is effectively figure-out-able, is 

figure-out-able using a Turing-machine and using 
effective representation conventions 
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