
Turing-Machines

Computability and Logic

Logic

Computer
Science

Math

Automated
Theorem
Proving

Godel
Results

Computability
Theory

Metalogic

Arithmetic

Arithmetization

Decidability
of Logic

Halting
Problem

Decidability
of Arithmetic

Axiomatization

Turing
Machines

Recursive
Functions

Central Question

• Given any statement about mathematics, is it
true or is it false?

• Example:
– Goldbach Conjecture: Every even number greater

than 2 is the sum of two prime numbers.
– True or false?

Decision Problem

• The decision problem for mathematics is to
find a way to decide whether some statement
about mathematics is true or false.

• Each domain has their own decision
problem(s).

Decision Procedures

Mathematical
Statement

“True”

“False”

??

P

P being a ‘procedure’ can be understood as P being some
kind of systematic method, or algorithm

Soundness and Completeness

• A decision procedure P is sound with regard to
some domain D iff:
– For any statement S about domain D:

• If P returns “True”, then S is true
• If P returns “False”, then S is false

• A decision procedure P is complete with
regard to some domain D iff:
– For any statement S about domain D:

• If S is true, then P returns “True”
• If S is false, then P returns “False”

The Axiomatic Method

• Define a set of axioms AD that capture basic
truths about some domain D, and see
whether some statement S about domain D
follows from AD

The Hope

1. There exists a set of axioms A such that all,
and only, mathematical truths are logical
consequences of A

2. There exists a decision procedure P for
deciding whether or not some mathematical
statement S is a logical consequence of A

The Really Exciting Prospect

• If 1 and 2 are true, and assuming we can
implement P on a computer (which, assuming
such a P exists, is quite likely, since it’s all
formal logic!):

• Proving or disproving mathematical claims can
be completely automated!

Decision Procedure for
Logical Consequence

A, S

“True” (S follows
from A)

“False” (S does
not follow from A)

??

P

“Entscheidungsproblem”
(German for Decision Problem)

Alan Turing, 1936
• Published “On Computable Numbers, with an

application to the Entscheidungsproblem”
– … his ‘Turing-machines’ paper!

• Argued that the Entscheidungsproblem is unsolvable
– There is no sound and complete systematic method for

deciding whether some (first-order logic) argument is valid
or not

– (combined with Godel’s work on the arithmetization of
logic, this implies that there is also no decision procedure
for arithmetic, let alone all of mathematics)

• Required Turing to consider all possible ‘systematic
methods’, i.e. ‘computations’ or ‘symbol-manipulating
algorithms’ … but how?

Computations

• A computation is a symbol-manipulation
algorithm.
– Example: long division.

• Not every algorithm is a computation
– Example: furniture assembly instructions

Computers

• A ‘computer’ is something that computes, i.e.
something that performs a computation, i.e.
something that follows a systematic procedure to
transform input strings into output strings.

• Humans can take the role of a computer.
– Of course, this does require that the human is able to

understand and perform the operations, i.e. that the
human can indeed execute the algorithm.

– If this is so, we call the computation ‘effective’.
• Modern computers have mechanized the process of

computation
– Are there mechanical computations that no longer can be

performed by humans, i.e. that are no longer effective?

The Scope and Limits of
Effective Computation

• In his 1936 paper, Turing tried to figure out what the
basic elements are of any effective computation … or
at least to what elements any kind of computation
can always be reduced to.

States and Symbols

• Take the example of multiplication: we make marks
on any place on the paper, depending on what other
marks there already are, and on what ‘stage’ in the
algorithm we are (we can be in the process of
multiplying two digits, adding a bunch of digits,
carrying over).

• So, when going through an algorithm we go through
a series of stages or states that indicate what we
should do next (we should multiply two digits, we
should write a digit, we should carry over a digit, we
should add digits, etc).

A Finite Number of Abstract States

• The stages we are in vary between the different
algorithms we use to solve different problems.

• However, no matter how we characterize these
states, what they ultimately come down to is that
they indicate what symbols to write based on what
symbols there are.

• Hence, all we should be able to do is to be able to
discriminate between different states
– what we call them is completely irrelevant!

• Moreover, although an algorithm can have any
number of stages defined, since we want an answer
after a finite number of steps, there can only be a
finite number of such states.

A Finite Set of Abstract Symbols

• Next, Turing pointed out that the symbols are
abstract as well: whether we use ‘1’ to represent the
number 1, or ‘☺’ to do so, doesn’t matter.

• All that matters is that different symbols can be used
to represent different things.
– What actual symbols we use is irrelevant!

• Also, while we can use any number of symbols, any
finite computation will only deal with a finite number
of symbols. So, all we need is a finite set of symbols.

A String of Symbols

• While we can write symbols at different places (e.g.
in multiplication we use a 2-dimensional grid),
symbols have a discrete location on the paper. These
discrete locations can be numbered.

• Or, put another way: we should be able to do
whatever we did before by writing the symbols in
one big long (actually, of arbitrarily long size) string
of symbols.

Reading, Writing, and Moving between
Symbols

• During the computation, we write down symbols on
the basis of the presence of other symbols. So, we
need to be able to read and write symbols, but we
also need to get to the right location to read and
write those symbols.

• With one big long symbol string, however, we can get
to any desired location simply by moving left or right
along this symbol string, one symbol at a time.

The Scope and Limits of
Effective Computation VI

• Turing thus obtained the following basic components
of effective computation:
– A finite set of states
– A finite set of symbols
– One big symbol string that can be added to on either end
– An ability to move along this symbol string (to go left or

right)
– An ability to read a symbol
– An ability to write a symbol

• This is … a Turing–machine!

Church-Turing Thesis
• The Church-Turing Thesis is that anything that we can figure

out using any kind of systematic method can be figured out
using a Turing-machine.

• In short: anything that is effectively computable is Turing-
computable

• Note: we can’t mathematically prove this Thesis, since we
can’t mathematically prove whether the mathematical
definition of Turing-computability captures the conceptual
notion of computability … but we can provide (and have!)
lots of evidence in its favor: so far, we have not a single
example of a systematic method that we can follow that
figures things out that Turing-machines cannot!

Turing Machines Demo

‘Computing Things’ Using a
Turing-Machine

• Remember that we want computations to ‘figure
something out’, i.e. we want to ‘compute something’. E.g:
– Compute the answer to some question
– Compute the solution to a problem

• The things we want to compute can often (always) be
stated as functions (e.g. question → answer. Or: problem →
solution)

• So: we have a machine that transforms input symbol strings
into output symbol strings, and we want to use that to
compute a function from some domain to some other
domain.
– But that means that to compute a function, we need to

interpret what the machine is doing. See next slide!

Computing Functions

x y

I O

f

M

Machine doing its thing

Figuring Stuff Out

c (encode) d (decode)
Syntactic
Computation

Semantic
Computation

Machines as Functions

• We can, and it is in fact useful to, treat any
Turing-machine M as a function …

• But it would be a function that maps input
configurations to output configurations.

• In other words, M : TC → TC

Representations and Configurations

• OK, so to use a Turing-machine to compute a function, we
need to specify how we are going to represent the input to
the function on the input tape … but we also need to
specify where the read/write head is!
– Indeed, one could regard the position of the read/write head as

part of the representation, in that the same tape could
represent different things, depending on the position of the
head on that tape … though this is highly ‘irregular’

• Let’s call the contents of the tape, together with the
position of the read/write head, the (tape) configuration of
the Turing-machine.
– Let TC be the set of all possible tape configurations
– Oh, and let TM be the class of all Turing Machines

Representing Natural Numbers
• From now on, we are going to focus on functions from

(any number of) natural numbers to natural numbers.
E.g
– Addition
– Multiplication
– Successor

• OK, so we need some representation of numbers!
– Decimal?
– Binary?
– Unary?
– … all are ok … but some are more ‘computation-friendly’

than others!

‘Standard’ Representation 1

• One ‘standard’ way to encode numbers using a Turing-
machine is to use unary representation:
– To represent the number n, we use a block of n consecutive 1’s
– If we have multiple numbers, we separate them by 0’s (or blanks)
– Also, for the input and output, standard practice is to require that the

read/write head is on the left-most 1 of the left-most block of 1’s

• So: let us define [n1,n2, …, nm] as the configuration of having a
block of n1 consecutive 1’s on the tape, followed by a 0,
followed by a block of n2 consecutive 1’s, followed by a 0, …,
followed by a block of nm consecutive 1’s, on an otherwise
blank (=0) tape, and with the read-write head on the left-most
1 of the left-most block of 1’s

Computing the Successor Function
• As an example, let us use a Turing-machine to compute

the successor function, i.e. s(n) = n+1, using the just
defined convention.

• That is, we want a Turing-machine that for any n,
transforms input configuration [n] into output
configuration [n+1]

• OK, this will do (0 is start state, 2 is halting state):
– <0,1,L,1> (in state 0, if you see a 1, move left and go to

state 1)
– <1,0,1,2> (in state 1, if you see a 0, write a 1, and move to

state 2)
• Let us call this machine Ms

More Formally
• Notice that machine Ms does something with *any* input configuration, whether it is of the

form [n] or not. But, relevant to what we want to show, we have that in particular:

𝑀𝑠 𝑛 = 𝑛 + 1

• Let us define encoding c: N → TC:

𝑐(𝑛) = [𝑛]

• Finally, let us define decoding c: TC → N:

 𝑑 𝑇 = � 𝑛 𝑖𝑖 𝑇 = [𝑛]
𝑢𝑛𝑑𝑢𝑖𝑖𝑛𝑢𝑑 𝑜𝑜𝑜𝑢𝑜𝑜𝑖𝑜𝑢

• It is now easy to see that for any n N:

𝑑(𝑀(𝑐(𝑛))) = 𝑛 + 1

• This is why we can say that machine Ms computes function s

Using M to ‘compute’ f

• OK, so it seems that in general, we have the
following definition:

• Machine M computes function f : X → Y iff:
– There exists an encoding c and decoding d such

that for all x ∈ X and y ∈ Y:
• if f(x) = y, then d(M(c(x))) = y

Whoops!!

• With this definition, *every* function whose
domain is enumerable is computable …. by
the null machine! (i.e. the machine that does
nothing, i.e. for which M(i) = i)

• Proof: For c, pick any injective function. Now
define d as: d(o) = f(c-1(o))!
– (alternative proof: pick c in such a way that it

already encodes the answer as part of its
encoding of the question … this is called
‘Bramming’)

‘Reasonable’ Representations

• ‘Brammings’ are not ‘reasonable’
representations!

• We want ‘reasonable’ representations.
• But how to define this?

Transformable Encodings

• “The encoding can be done in may reasonable
ways. It does not matter which one we pick,
because a Turing machine can always translate
one such encoding into another” (Sipser)

• But how do we know this is true? Maybe there is
some ‘reasonable’ encoding that is not
transformable into other ‘reasonable’ encodings.

• And if we define a ‘reasonable‘ encoding as one
that is transformable into (…what?! How to avoid
a circular definition here?!) … then that puts the
cart before the horse!

‘Effective’ Encodings

• Probably the best thing we can do is to say
that encodings should be ‘effective’ , i.e. that
humans should be able to perform the
encoding.

Church-Turing Thesis, Revisited

• We can now a bit more careful about the
Church-Turing Thesis:
– Anything that is effectively figure-out-able, is

figure-out-able using a Turing-machine and using
effective representation conventions

	Turing-Machines
	Slide Number 2
	Central Question
	Decision Problem
	Decision Procedures
	Soundness and Completeness
	The Axiomatic Method
	The Hope
	The Really Exciting Prospect
	Decision Procedure for �Logical Consequence
	Alan Turing, 1936
	Computations
	Slide Number 13
	Computers
	The Scope and Limits of �Effective Computation
	States and Symbols
	A Finite Number of Abstract States
	A Finite Set of Abstract Symbols
	A String of Symbols
	Reading, Writing, and Moving between Symbols
	The Scope and Limits of �Effective Computation VI
	Church-Turing Thesis
	Turing Machines Demo
	‘Computing Things’ Using a �Turing-Machine
	Computing Functions
	Machines as Functions
	Representations and Configurations
	Representing Natural Numbers
	‘Standard’ Representation 1
	Computing the Successor Function
	More Formally
	Using M to ‘compute’ f
	Whoops!!
	‘Reasonable’ Representations
	Transformable Encodings
	‘Effective’ Encodings
	Church-Turing Thesis, Revisited

